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SUMMARY

High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure,

and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging

platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear

scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital cam-

era captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection.

Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be

manually annotated and analyzed using image analysis software. Increased throughput was attained by design-

ing and implementing an automated kernel counting system using transfer learning and a deep learning object

detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-

specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously

undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vac-

uolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and

kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.

Keywords: Zea mays, digital imaging, deep learning, ear, high-throughput phenotyping, kernel, pollen,

technical advance.

INTRODUCTION

High-throughput plant phenotyping is rapidly transforming

crop improvement, disease management, and basic

research (reviewed in Fahlgren et al., 2015; Mahlein, 2016;

Tardieu et al., 2017). High-throughput phenotyping meth-

ods have been developed in several agricultural and model

plant systems, including maize (Zea mays). There has been

substantial progress towards deploying maize phenotyping

systems, both in the private (Choudhury et al., 2016) and

academic (Miller et al., 2017) realms. Many existing sys-

tems focus on phenotyping maize roots (Clark et al., 2013;

Jiang et al., 2019) and above-ground shoots (Chaivivatrakul

et al., 2014; Choudhury et al., 2016; Junker et al., 2014;

Zhang et al., 2017). Maize ears, with the kernels they carry,

contain information about the plant and its progeny. Ears

are easily stored, and do not require phenotyping equip-

ment to be in place in the field or greenhouse at specific

times during the growing season. Kernels are a primary

agricultural product of maize, which has led the majority of

previous phenotyping efforts to focus on aspects of yield,

such as ear size, kernel row number, and kernel structure

and dimensions (Liang et al., 2016; Makanza et al., 2018;

Miller et al., 2017). These studies have used techniques

that varied from expensive and specialized three-dimen-

sional or line-scanning cameras (Liang et al., 2016; Wen

et al., 2019) to relatively low-cost flatbed scanners and digi-

tal cameras (Makanza et al., 2018; Miller et al., 2017).

Beyond their agricultural importance, studying maize

ears can answer fundamental questions about basic biol-

ogy. The transmission of mutant genes can be easily

tracked in maize kernels by taking advantage of a wide

variety of visible endosperm markers (Li et al., 2013; Neuf-

fer et al., 1997), which can be genetically linked to a mutant

of interest (e.g., Arthur et al., 2003; Bai et al., 2016; Huang

et al., 2017; Phillips and Evans, 2011; Warman et al., 2020).
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On the ear, kernels occur as an ordered array of progeny,

which allows the transmission of mutant alleles to be

tracked not only by total transmission for each individual

cross, but within individual ears. Historically, transmission

of markers has been quantified by manual counting. This

approach has several limitations, among them a lack of a

permanent record of the surface arrangement of kernels on

the ear. The same disadvantages apply to most high-

throughput kernel phenotyping methods, which generally

rely on kernels being removed from the ear before scan-

ning and do not typically include marker information.

Computer vision approaches to automated kernel count-

ing can improve throughput in phenotyping systems and

improve the quality of data collected by including posi-

tional information for each kernel. One central challenge is

successfully identifying which parts of an image contain

the objects of interest and which parts contain the back-

ground, either through object detection (drawing a bound-

ing box around the object) or segmentation (assigning

each pixel in the image as ‘object’ or ‘not object’). Previous

systems have taken advantage of plant color or edges to

algorithmically separate objects for quantification in some

specialized contexts (Makanza et al., 2018; Zhang et al.,

2017). These approaches can be computationally efficient,

but are limited by variations in lighting conditions, image

quality, and the distribution of objects in an image. Closely

packed objects, such as kernels on a maize ear, can be dif-

ficult to separate using these methods, especially when the

objects do not have consistent colors or clear edges.

Some of these obstacles to object detection can be over-

come with deep learning approaches. These approaches

have been applied to a variety of biological problems and

can show dramatic improvements over traditional methods

(reviewed in Angermueller et al., 2016; Ching et al., 2018).

Deep learning uses the fundamental concept of artificial

neural networks, in which multiple nodes (sometimes

referred to as neurons) are arranged in variously connected

layers. Nodes have associated parameters that are adjusted

as the model is exposed to data. Data move through the

network from an input layer to at least one hidden layer,

and finally to the output layer. Deep learning is character-

ized by a neural network with multiple hidden layers, in

which each layer describes features of the data being

passed through the network (Ching et al., 2018). A subset of

deep learning approaches called convolutional neural net-

works (CNNs) are particularly useful for image analysis.

CNNs contain at least one convolutional layer, in which a fil-

ter moves (convolves) across an image to abstract informa-

tion into the layer (Rawat and Wang, 2017). CNNs form the

foundation of the object detection methods implemented in

TensorFlow (e.g., Object Detection API, Huang et al., 2016)

and Darknet (e.g., YOLO, Redmon and Farhadi, 2018) that

have seen widespread use across disciplines. Examples of

such networks being used in biological contexts include

plant disease detection (Mohanty et al., 2016), leaf quantifi-

cation (Ubbens and Stavness, 2017), inflorescence move-

ment tracking (Gibbs et al., 2019), and hypocotyl

segmentation (Dobos et al., 2019).

Here we describe a novel maize ear phenotyping system

and computer vision pipeline. The maize ear scanner

(MES) and image processing pipeline is a cost-effective

method to improve ear phenotyping. The design described

here is built from easily acquired parts and a basic camera,

making this approach accessible to most if not all labs.

Using the MES, flat projections of roughly cylindrical maize

ears can be produced that provide a digital record of the

surface of the ear. These projections can then be quantified

in a variety of ways to track the locations and identities of

kernel phenotypes, including marker genes. In addition,

projections can be quantified for kernel phenotypes and

locations with a deep-learning-based computer vision pipe-

line implemented in TensorFlow, a free and open source

framework (Abadi et al., 2016a, 2016b). Finally, we use the

system to analyze a large dataset of ears to assess mutant

effects on transmission rate. This system builds on previ-

ous maize ear phenotyping techniques, which focus on

yield components of homogenous ears (Miller et al., 2017),

by enabling rapid phenotyping of heterogeneous kernel

markers. We demonstrate that this system substantially

increases phenotyping throughput, enabling rapid biologi-

cal discovery and thorough quantitative analyses.

RESULTS

Design and construction of the maize ear scanner

We designed a simple, custom-built maize ear scanner

(MES) to efficiently phenotype maize ears. The MES rotates

each ear 360° while a stationary camera records a video,

which can then be processed into a cylindrical projection.

Materials for constructing the scanner were limited to

those that are widely available and affordable (Table 1).

The frame of the scanner was built from dimensional lum-

ber, with a movable mechanism built from drawer slides

that enables a wide range of ear sizes to be accommodated

(Figure 1a). A rotisserie motor spins the ear at a constant

speed while a USB camera or cell phone camera records a

video of the rotating ear. The scanning process, including

the insertion of the ear into the scanner and video capture,

takes approximately 1 min per ear.

We tested two configurations of the scanning system. In

the first, a minimal configuration, a cell phone camera was

used to capture movies of the rotating ear in full-spectrum

visible light (MES v1.0). This configuration costs less than

$100 (Table 1), excluding the cost of the cell phone, and is

capable of producing flat projections from a variety of ears

in visible light. The second configuration uses a dedicated

USB camera driven by a computer (MES v2.0, Figure 1b).

This configuration costs about $1400 (Table 1), including a
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blue light and orange camera filter to capture GFP kernel

markers present in a population of transgenic mutants (Li

et al., 2013). The second configuration increases the scan-

ner’s efficiency by automating video processing, annota-

tion, and distribution to cloud or local storage systems.

Processing videos into projections for manual

quantification

The output of the scanner is a video of the rotating ear.

This video can be directly quantified, but we found a ‘flat’

image projection most useful for visualizing the entire sur-

face of the ear, as well as for quantifying the distribution of

kernel phenotypes. To produce this projection with videos

captured by an external camera or cell phone, videos were

first uploaded to a local computer and annotated with

identifying metadata. This process was streamlined in the

second configuration of the scanner. In this configuration,

videos were captured directly to the computer using the

command line utility FFmpeg (version 3.4.6) to control a

USB camera. Videos were automatically processed each

night, with the resulting projections uploaded to cloud

storage (Figure 2a).

Video processing consists of three steps (Figure 2b). In

the first, FFmpeg is used to extract frames from the video

into separate images. Next, images are cropped to the cen-

ter horizontal row of pixels using the command line utility

ImageMagick (version 6.9.7). Finally, all rows of pixels, one

from each frame, are appended sequentially, resulting in

the final image. Due to the scanner’s consistent rotational

speed, a fixed number of frames cover one complete

rotation, resulting in no gaps or overlap in ear projections.

Images of a variety of maize ears representing several

widely used kernel markers were captured using the

Table 1 Materials and costs for scanner construction

Material Cost

Rotisserie motor (Minostar universal grill electric
replacement rotisserie motor, 120 V, 4 W)

$22.99

Drawer slides (Liberty D80618C-ZP-W 18-inch ball
bearing drawer slides)

$11.94

Pillow block bearing (Letool 12-mm mounted housing
self-aligning pillow flange block bearing)

$3.75

Lumber ~$25.00
Screws ~$5.00
Metal rod ~$5.00
Tripod (AmazonBasics 60-Inch Lightweight Tripod) $23.49
Computer (Dell 3630, Ubuntu Linux) $616.00
Camera (ELP USBFHD06H-SFV) $76.99
Blue light (for GFP, Clare Chemical HL34T) $590.00
Orange filter set (for GFP, Neewer camera flash color
gel kit)

$13.99

Total cost, alternative system 1 (smartphone, full-
visible-spectrum images)

$97.17

Total cost, alternative system 2 (computer, dedicated
camera, light, and filters for GFP imaging)

$1,394.15

Figure 1. Efficient, cost-effective maize ear phenotyping with rotational

scanner.

(a) Schematics of maize ear scanner in closed position (left) and open posi-

tion (right). Full construction diagrams are available in Appendix S1a,b.

(b) Image of scanner with ear in place. A dedicated USB camera is positioned

in front of the ear as shown, with the ear centered in the frame. A video is

captured as the ear spins through one full rotation, which is then processed

to project the surface of the ear onto a single flat image. An optional blue

light source for GFP imaging is shown on the right side of the scanner.

Figure 2. Processing videos into flat ear projections.

(a) Video annotation and processing workflow.

(b) Processing videos to flat ear projections. The process of generating a

projection from a video begins by extracting individual frames using

FFmpeg. After frames are extracted, each frame is cropped to the middle

horizontal row of pixels using the command line utility ImageMagick. The

resulting collection of pixel rows, one per frame, is then concatenated into a

single image depicting the entire surface of the ear.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
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scanner (Figure 3a). Both anthocyanin (c1, a2, and pr1) and

fluorescent (Ds-GFP) kernel markers were clearly dis-

cernible in the final images, as well as the kernel morphol-

ogy marker brittle endosperm1 (bt1). Digital projections

were manually quantified for color and fluorescent kernel

phenotypes using the FIJI distribution of ImageJ (Fig-

ure 3b). Using this approach, annotation of an entire ear

could be completed in 5–10 min, depending on the size of

the ear and the relative experience level of the annotator. In

addition to producing total quantities of each kernel pheno-

type, manual annotations result in coordinates for each

annotated kernel, which can be further analyzed if desired.

Manual annotations of scanner images in ImageJ were

compared to manually counting the kernels on the ear (Fig-

ure 3c). We observed a significant correlation between

these two methods (R2 > 0.999), validating the scanning

method. To test the utility of the MES, we scanned and

manually counted over 400 ears with marker-linked muta-

tions in >50 genes. With these methods, we were able to

detect weak but significant transmission defects (approxi-

mately 45% transmission of a marker-linked mutation) for a

number of mutant alleles, using both anthocyanin and GFP

kernel markers. Manually counted ear scanner image vali-

dation is described in detail in a previous study (Warman

et al., 2020).

A traditional computer vision approach for automated

discrimination of fluorescent and wild-type kernels

To increase throughput, we investigated computer vision

methods to identify kernel locations and phenotypes from

two-dimensional ear projections. We were most interested

to establish a pipeline to automate the counting of Ds-GFP

versus wild-type (non-fluorescent) kernels, due to the

broadly applicable use of this marker to quantify

transmission rates for several thousand available mutations

(Li et al., 2013; Warman et al., 2020). First, a traditional com-

puter vision approach was assessed for its feasibility for

quantification of images with GFP kernel markers. In this

method, region-based segmentation of a two-dimensional

ear projection was performed using a watershed transforma-

tion followed by morphological opening to segment individ-

ual kernels (Figure S1). We found that extracting the blue

channel of the RGB image for segmentation avoided inaccu-

racies resulting from varying intensities of kernel fluores-

cence in the green and red channels. After segmentation,

segments were classified using k-means clustering into two

groups for presence and absence of GFP. Fine-tuning of

watershed parameters resulted in the accurate segmentation

of individual images (Figure S1a). However, because of vari-

ations in lighting, GFP intensity, kernel shape, and spacing

on the ear, this method generalized poorly across a larger

test dataset (Figure S1b). This method was able to predict

total fluorescent and non-fluorescent kernel numbers with

some success (linear regression, adjusted R2 = 0.186, 0.205,

respectively), but failed to accurately predict the percentage

of kernels carrying the GFP marker (linear regression,

adjusted R2 = 0.000). Because marker-tagged mutants show

Mendelian (50%) or near-Mendelian inheritance, accurate

counts are required to measure abnormal inheritance with

sufficient statistical significance.

Implementation of a deep learning model for automated

kernel detection

To overcome the large variation in ear images, we turned

to deep learning models, which are effective in detecting

objects within heterogeneous images. Models using a

CNN architecture have dominated performance metrics in

the computer vision field for several years (for example,

Figure 3. Examples of ear surface projections and

manual quantification using ImageJ.

(a) Representative ear projections for several widely

used maize kernel markers. From top to bottom:

anthocyanin gene c1; GFP fluorescent kernel marker

Ds-GFP; anthocyanin and kernel morphology mark-

ers bt1, a2, and pr1.

(b) Representative example of manual annotation

of fluorescent maize kernels. An ear of maize segre-

gating for fluorescence was imaged. Fluorescent

(black dots) and non-fluorescent (blue dots) kernels

were manually identified using the ImageJ Cell

Counter plugin.

(c) Comparison of manually counting kernels on

ears versus manually annotating kernels from ear

projections using ImageJ. Fluorescent and non-flu-

orescent kernels were counted, with the percentage

of kernels showing fluorescence shown here.
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Collection Of Common Objects (COCO) Object Detection

Challenge, http://cocodataset.org/#detection-leaderboard,

Open Images Object Detection Challenge, https://storage.

googleapis.com/openimages/web/challenge2019.html#ob

ject_detection). We used the TensorFlow library (Abadi

et al., 2016a, 2016b) and Object Detection API (Huang et al.,

2016) to implement a CNN-based model for our purposes.

For the pipeline, we chose to use the Faster R-CNN with

Inception Resnet v2, with Atrous convolutions (Ren et al.,

2015; Szegedy et al., 2016). This model was selected to bal-

ance speed and accuracy for our application based on its

performance on the COCO dataset (https://github.com/te

nsorflow/models/blob/master/research/object_detection/

g3doc/tf1_detection_zoo.md).

CNNs require training data to generate effective models.

To train the network, we generated a dataset of 300

scanned ear images with all kernels annotated with bound-

ing boxes and marker classes, either fluorescent or non-flu-

orescent. Images were generated by scanning ears

produced from heterozygous outcrosses of mutant alleles

tagged with GFP fluorescent kernel markers, with 150

scanned ear images for each field season. The mean kernel

number for training ear images was 349, resulting in

>100 000 bounding boxes in the training set. We used a

transfer learning approach because of the large amount of

training data required to accurately train a neural network

from scratch. Transfer learning takes advantage of a well-

trained network (in this case trained on the COCO dataset,

>200 000 images with objects in 80 categories labeled with

bounding boxes) to form the foundation for a new network

optimized for a specific task. The weights of the inner lay-

ers of the network are updated based on the new training

data, and the output layer is modified to reflect the new

classes (fluorescent and non-fluorescent).

Our first attempts at training the network led to poor

results (Figure 4a). Kernel bounding boxes were accurate in

the top portion of test images, but these results failed to

generalize across the entire image. Due to the large number

of kernels on each image (over 600 on some ears), we sus-

pected graphics processing unit (GPU) memory limitations

may have caused incomplete annotations. Supporting this

explanation, we gained incremental improvements by run-

ning the training and testing on a GPU with more memory

(Nvidia V100 with 32 GB of memory versus an Nvidia M10

with 8 GB of memory) and a configuration that increased

the number of initial bounding box proposals in the model.

One way to reduce the computational power necessary for

a deep learning task is to subdivide the task into a series of

simpler problems. In this case, we chose to subdivide each

image into three sub-images, both for the training and for

the testing of the model (Figure 4b). Images were subdivided

vertically, with overlapping regions included between each

division. After images were subdivided, the model was run

on each sub-image individually. Bounding boxes near the

vertical divisions were then removed to avoid partial bound-

ing boxes for kernels that spanned two sub-images. Finally,

annotations for the three sub-images were combined, and

redundant bounding boxes in the overlapping areas were

removed with non-maximum suppression, a process that

resolves redundant bounding boxes by comparing their

overlap and confidence scores. This method reduced the

GPU memory required for inference and resulted in accurate

annotations across entire images.

Deep learning models trained on images from individual

cameras improved detection of kernels and phenotypic

classes

To test the deep learning models, we created a dataset of

scanned ear images from the 2018 and 2019 field seasons,

with 160 images from each season. Ears were generated

from reciprocal outcrosses (heterozygous mutants crossed

to wild-type lines both through the male and female) and

were manually annotated with ImageJ to produce total flu-

orescent and non-fluorescent kernel counts for each ear.

Figure 4. Workflow for subdividing images during model training and infer-

ence.

(a) Representative image of initial object detection attempts showing

incomplete bounding box annotations. Annotations were biased towards

the top of the image and failed to identify the majority of kernels.

(b) Image subdivision workflow. Images were first subdivided into three

smaller images, with overlap between the images. The computer vision

model was then run on each sub-image individually. Bounding boxes near

the vertical borders between sub-images were removed to avoid split

bounding boxes on single kernels. Annotations were recombined, and

redundant boxes in overlapping sections were removed with non-maximum

suppression. Finally, completed annotations were overlaid on the original

image.
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Testing set ear images were not used for training or valida-

tion of the model. Lines represented mutant alleles in a

variety of genes highly expressed in the maize male game-

tophyte (Warman et al., 2020). Kernels containing mutant

alleles were marked with a GFP seed marker originating

from Ds-GFP transposable element insertions. Projections

generated across the two seasons represented a wide

range of ears. Variations found in projections included dif-

ferences in kernel size, shape, GFP intensity, and color. In

addition, different cameras were used in each year, repre-

senting MES v1.0 and v2.0.

We first aimed to create a model with as much generaliz-

ability as possible, and thus included training images from

both years. This first model, trained on images from two

cameras, detected kernels in a test dataset with a moderate

degree of accuracy (Figure S2). We used adjusted R2 val-

ues as the principal performance metric, comparing total

fluorescent and non-fluorescent kernel counts between

manual annotations and model predictions (i.e., the inher-

ently uncertain output from the model). The closer the R2

value is to one, the closer the model predictions are to

manual counts, indicating higher accuracy. The resulting

percentage of fluorescence kernels was quantified with an

adjusted R2 of 0.930. In addition, we calculated the mean

absolute deviation in kernel count across the entire test

dataset. The mean absolute deviation for fluorescent ker-

nels was 5.87, whereas the mean absolute deviation for

non-fluorescent kernels was 11.92. The mean absolute

deviation for percent fluorescent kernel transmission was

1.85%.

A single model trained on a combined dataset from both

years accurately identified kernels in scanned ear images.

However, training separate models for each year substan-

tially increased overall performance across a wide variety

of images from both years of our test dataset (Figure 5).

Individual models were robust to variations in kernel

appearance, as well as to variations in ear size and kernel

spacing. The models predicted total fluorescent and non-

fluorescent kernels across the 2018 and 2019 test datasets

with a high degree of accuracy (Figure 5b,c). The resulting

transmission rate predictions were accurate across a wide

range of inheritance values for both years (linear regres-

sion; adjusted R2 = 0.984, 0.945, respectively). The mean

absolute deviations for fluorescent kernels in individual

models for 2018 and 2019 were 5.74 and 5.75, respectively,

whereas the mean absolute deviations for non-fluorescent

kernels were 8.58 and 6.81. The mean absolute deviations

for percent fluorescent kernel transmission were 0.885%

and 1.38%. Training individual models was substantially

faster than training a single model (approximately 100-fold

faster training time on an Nvidia V100 GPU). Detailed met-

rics for model training can be found in the Experimental

Procedures section below. While the variation introduced

by using different cameras for each year was likely

responsible for the increased accuracy of individual mod-

els, we cannot rule out other potentially correlated factors

in the two growing seasons. Because of their increased

accuracy, we proceeded to use individual models for each

camera/year to investigate transmission rates for Ds-GFP

mutant alleles. We term these models collectively as EarVi-

sion.

Application of deep learning models to a large ear

projection dataset

To test the EarVision deep learning models on a larger

dataset, we quantified a set of 369 scanned ear images that

had manually counted kernels from a previous study (War-

man et al., 2020). The original dataset consisted of images

of ears from maize plants grown during the 2018 field sea-

son. Ears were harvested from different plants with single

Ds-GFP insertions in 44 genes. A total of 48 mutant alleles

were examined, with four genes having two independent

Ds-GFP insertions. Genes were selected because they are

highly expressed in the male gametophyte. Reciprocal out-

crosses of heterozygous mutants were carried out to func-

tionally interrogate these genes. This process led to the

identification of several mutant alleles with reduced trans-

mission through the male. We assessed the accuracy of

the EarVision model’s predictions by comparing transmis-

sion rates for manually annotated images and model pre-

dictions (Figure S3). For crosses through the female, the

model predicted that mutations in all 44 genes had no sig-

nificant difference from Mendelian (50%) inheritance, con-

sistent with manual annotations (Figure S3a). For crosses

through the male, the model successfully predicted 7/8

alleles that showed significant transmission defects when

transmission was quantified manually, with the transmis-

sion of one of these alleles predicted as non-significant by

the model (Figure S3b). A generalized linear model

showed no evidence of significant systematic differences

between manual annotations and model predictions (P >
0.8).

A second set of reciprocal crosses was carried out in the

2019 field season to increase the size of the ear image

dataset. Crosses from the 2019 field season included plants

with previously tested mutant alleles to determine whether

transmission rates identified in 2018 remained consistent

in the following year. Crosses also contained plants with

additional alleles that were not included in the published

analysis (Warman et al., 2020), either because of insuffi-

cient crosses in 2018 (five alleles) or lack of PCR confirma-

tion of the Ds insertion location (seven alleles). In total,

approximately 1000 ears from plants containing 60 mutant

alleles were quantified using individual computer vision

models for 2018 and 2019 field seasons. Combined

2018 + 2019 model estimates were largely aligned with

2018 manual annotations for both male and female crosses

(Figure 6). The data from the combined models correctly

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
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predicted no significant transmission defects through the

female for 56/60 alleles in the combined dataset, with 4/60

alleles assigned GFP transmission rates significantly

increased over Mendelian inheritance (Figure 6a). These

apparent false positives were likely the result of a system-

atic undercount of non-fluorescent kernels in a small sub-

set of female crosses in the 2019 dataset (Figure S4a,b).

This is potentially due to the relatively strong GFP signal

arising from doubled dosage of Ds-GFP in the endosperm,

leading to reduced accuracy in the recognition of non-fluo-

rescent kernels (Figure S4c). The model correctly predicted

all eight alleles showing significant transmission defects as

determined by 2018 manual counts (Figure 6b). In addition,

the model predicted male transmission rates for the 12

alleles not present in the 2018 dataset, the majority of

which (11/12) showed no evidence of non-Mendelian inher-

itance. However, the model identified a significant,

previously undescribed, male-specific transmission defect

associated with a Ds insertion predicted to be in the maize

gene Zm00001d002824 (Table 2). Zm00001d002824 codes

for a putative vacuolar processing enzyme (VPE). VPEs

have been shown to be involved in the maturation of vac-

uolar proteins as well as vacuolar-organized programmed

cell death (Yamada et al., 2005), and their potential role in

male gametophyte function is unexplored.

DISCUSSION

Large amounts of information can be obtained from maize

ears. Certain types of information, such as kernel size and

quality, have direct relevance for improving maize for agri-

cultural purposes. Other types of information, such as ker-

nel phenotype distributions, can be used to study

fundamental biological processes. Our goal was to develop

a methodology to capture some of this information via

Figure 5. Deep learning models trained on image

datasets from different field seasons and cameras

accurately detected kernels and classes across a

test dataset.

(a) Example test images and annotations predicted

by the model. Top images: A typical ear from the

2018 field season showing Mendelian inheritance of

GFP-marked kernels. The model predicted a 45%

transmission rate, whereas manual annotation indi-

cated 46.3% transmission. Middle images: A 2018

ear showing a significant transmission defect, with

few GFP-marked kernels. The model predicted a

16.9% transmission rate, whereas manual annota-

tion indicated 16.2% transmission. Bottom images:

A 2019 ear showing Mendelian inheritance. The

model predicted a 50.1% transmission rate,

whereas manual annotation indicated 50.7% trans-

mission.

(b) Total kernel counts and percent GFP across the

2018 test dataset (160 images). Adjusted R2 values

were calculated using a linear model comparing

manual counts (x-axis) to deep learning model pre-

dictions (y-axis). Dashed diagonal lines represent

equal values for both manual counts and model

predictions. Adjusted R2 values for total fluorescent,

non-fluorescent, and percent fluorescent kernels

were above 0.97.

(c) Total kernel counts and percent GFP across the

2019 test dataset (160 images). Adjusted R2 values

were again calculated using a linear model compar-

ing manual counts to deep model predictions and

were above 0.94.

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
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digital imaging and automated kernel detection and phe-

notypic categorization. Overall, the methodology enables

standardized, replicable measurement of a variety of ear

and kernel characteristics, and provides a permanent digi-

tal record of ears for archiving and future reanalyses. The

scanner is fast and cost-effective in its minimal configura-

tion (MES v1.0). A step-up from the minimal configuration

(MES v2.0) enables a more automated system for file trans-

fer and video-to-projection generation. The addition of Ear-

Vision enables deep-learning-based kernel quantification

of the resulting images, dramatically scaling up the

amount of quantitative data that can be feasibly generated.

In addition, automated quantification avoids variation

introduced by multiple individuals manually quantifying

images.

The MES provides phenotyping data previously difficult

to capture, as cylindrical projections are a convenient way

of visualizing the entire surface of an ear in a single image.

However, because maize ears are not perfect cylinders,

there are limitations: The projections distort regions of the

ear that are not cylindrical, typically the top and bottom,

resulting in kernels that appear larger than those in the

middle of the ear (Figure 3a); off-center placement of the

ear in the MES can also produce minor distortions. Exces-

sively curved ears, sometimes resulting from uneven polli-

nation, can lead to more severe distortions. Although

approximate values for metrics like kernel dimensions can

be calculated from the current system’s images, projection

distortions introduce imprecision, particularly at the base

and apex. Future development could produce more precise

measurements by using the source video as input to

model the ear in three dimensions, particularly with the

addition of calibration objects (Feldmann et al., 2019). We

currently limit the use of the EarVision pipeline to relatively

straight, uniform-thickness ears, whereas more distorted

ear images can be quantified using manual annotation.

Capturing high-quality and standardized images is cru-

cial for best practice use of the system. Differences in pho-

tography equipment, image quality, and variation in ear

and kernel morphology can compromise accuracy of the

EarVision pipeline. A small subset of kernels that were sig-

nificantly outside the normal range of color variation were

not identified by the model, particularly in images with

non-optimal exposure (Figure S4). Such cases can likely be

resolved with an improved imaging protocol and quality

control, particularly of high-contrast, strong-GFP-signal

images. However, the overall impact of these weaknesses

on the EarVision model’s accuracy was low in our current

dataset, due to the relative scarcity of such cases.

Given the ease with which alternate lighting and/or sen-

sors can be incorporated, the MES appears adaptable to a

wide range of kernel markers and phenotypes (for exam-

ple, those found in Figure 3a). The flexibility and conve-

nience associated with digital images enables manual

annotation of the projections produced by the scanner for

a variety of applications, such as measuring patterns of

kernel distribution, quantifying empty space on the ear,

and annotating other phenotypes like abnormal or aborted

kernels (e.g., as with the gex2 sperm cell mutant, Warman

et al., 2020). In addition, the ability to easily generate a dig-

ital projection of the entire ear surface increases the num-

ber of kernels that can be phenotyped per ear

approximately threefold, relative to images of a single face

of the ear. This is particularly useful in scenarios where the

number of ears is limiting and where effects are subtle.

Improvements in statistical power using this method are

apparent in measurements of single ears using v2 tests,

with transmission rates of 45% determined to be statisti-

cally significant in full ear scans but not when kernel

counts were reduced to one-third. However, when large

numbers of ears are tested using a generalized linear

model (e.g., Figure 6), threefold reductions in kernel counts

per ear have relatively minor effects on the statistical sig-

nificance of transmission defects. Thus, depending on the

goals and design of an experiment, a full scan of every ear

Figure 6. Computer vision model predictions align with manual counts for

GFP transmission across two field seasons.

(a) Transmission results from plants containing heterozygous Ds-GFP inser-

tion alleles outcrossed through the female. A total of 60 alleles were quanti-

fied in individual plants, based on high expression levels of the

corresponding wild-type gene in male reproductive tissues, by RNA-seq

(Warman et al., 2020). Alleles are plotted by the logsPKM) of their respective

wild-type gene in the tissue representing the gene’s highest expression.

(b) Transmission rates for all alleles assessed, when plants containing

heterozygous Ds-GFP insertion alleles were outcrossed through the male.

Expression levels are shown on the x-axis as described in (a).

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2021), 106, 566–579

Development of a maize ear phenotyping system 573



T
a
b
le

2
C
h
ar
ac

te
ri
st
ic
s
o
f
g
en

es
h
ar
b
o
ri
n
g
n
ew

ly
as

se
ss
ed

D
s-
G
FP

al
le
le
s

E
xp

re
ss
io
n

C
at
eg

o
ry

R
ea

so
n
fo
r
ex

cl
u
si
o
n
fr
o
m

W
ar
m
an

et
al
.
(2
02

0)
G
en

e
d
es

ig
n
at
io
n

(v
3)

G
en

e
d
es

ig
n
at
io
n
(v
4)

D
s-
G
FP

al
le
le

M
al
e

tr
an

sm
is
si
o
n

ra
te

A
d
ju
st
ed

P
-v
al
u
e

B
es

t
B
LA

S
T
H
it
,

A
.
th
al
ia
n
a

A
n
n
o
ta
ti
o
n
(B
73

v4
G
ra
m
en

e)

S
ee

d
lin

g
O
n
ly

In
su

ffi
ci
en

t
cr
o
ss
es

G
R
M
Z
M
2G

08
07

24
Z
m
00

00
1d

03
13

25
td
sg

R
10

6E
07

48
.6
4%

0.
58

9
A
T
4G

27
67

0
H
ea

t
sh

o
ck

p
ro
te
in

21

S
ee

d
lin

g
O
n
ly

In
su

ffi
ci
en

t
cr
o
ss
es

G
R
M
Z
M
2G

14
83

33
Z
m
00

00
1d

00
57

98
td
sg

R
44

E
07

47
.8
7%

0.
50

3
A
T
3G

14
23

0
E
th
yl
en

e-
re
sp

o
n
si
ve

tr
an

sc
ri
p
ti
o
n
fa
ct
o
r
R
A
P
2-
2

S
ee

d
lin

g
O
n
ly

In
su

ffi
ci
en

t
cr
o
ss
es

G
R
M
Z
M
2G

14
83

87
Z
m
00

00
1d

01
72

40
td
sg

R
91

G
06

50
.8
0%

0.
68

6
A
T
5G

63
03

0
G
lu
ta
re
d
o
xi
n
-C
1

S
ee

d
lin

g
O
n
ly

In
su

ffi
ci
en

t
cr
o
ss
es

G
R
M
Z
M
2G

37
43

02
Z
m
00

00
1d

05
11

94
td
sg

R
65

A
10

52
.2
6%

0.
25

8
A
T
2G

16
50

0
A
rg
in
in
e
d
ec

ar
b
o
xy

la
se

S
p
er
m

C
el
l

In
su

ffi
ci
en

t
cr
o
ss
es

A
C
19

44
05

.3
_F

G
02

1
Z
m
00

00
1d

01
25

75
td
sg

R
83

A
02

49
.2
1%

0.
79

6
A
T
1G

19
10

0
P
ro
te
in

M
IC
R
O
R
C
H
ID
IA

6
S
p
er
m

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

03
88

51
Z
m
00

00
1d

00
25

70
td
sg

R
06

C
04

48
.7
6%

0.
71

6
A
T
3G

57
87

0
S
U
M
O
-c
o
n
ju
g
at
in
g
en

zy
m
e

S
C
E
1

S
p
er
m

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

06
25

54
Z
m
00

00
1d

00
28

24
td
sg

R
89

B
08

37
.2
1%

<0
.0
00

00
1

A
T
1G

62
71

0
V
ac

u
o
la
r
p
ro
ce

ss
in
g
en

zy
m
e,

b
et
a-
is
o
zy
m
e

S
p
er
m

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

12
43

65
Z
m
00

00
1d

01
26

74
td
sg

R
29

A
11

49
.1
3%

0.
79

6
A
T
3G

29
20

0
C
h
o
ri
sm

at
e
m
u
ta
se

1
V
eg

et
at
iv
e

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

03
38

28
Z
m
00

00
1d

03
16

78
td
sg

R
67

H
12

48
.7
3%

0.
70

3
A
T
3G

12
28

0
R
et
in
o
b
la
st
o
m
a
fa
m
ily

3

V
eg

et
at
iv
e

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

05
14

91
Z
m
00

00
1d

00
50

53
td
sg

R
85

A
08

50
.3
2%

0.
89

0
A
T
3G

10
87

0
M
et
h
yl
es

te
ra
se

17

V
eg

et
at
iv
e

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

14
01

07
Z
m
00

00
1d

04
23

53
td
sg

R
02

A
05

47
.4
3%

0.
28

3
A
T
1G

04
92

0
S
u
cr
o
se

p
h
o
sp

h
at
e
sy

n
th
as

e2

V
eg

et
at
iv
e

C
el
l

U
n
co

n
fi
rm

ed
in
se

rt
io
n

G
R
M
Z
M
2G

31
91

67
Z
m
00

00
1d

03
96

93
td
sg

R
10

8A
02

47
.0
5%

0.
24

3
A
T
3G

27
67

0
P
ro
te
in

R
S
T
1

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2021), 106, 566–579

574 Cesar Warman et al.



may not be necessary, and phenotyping platforms that effi-

ciently image a single face of an ear may be preferable

(e.g., Makanza et al., 2018; Miller et al., 2017).

However, when compared to methods that image a sin-

gle face of the ear, whole-ear projections provide images

with not only a larger kernel population size, but also the

capacity for increased phenotypic richness (e.g., assessing

kernel distribution across the entire relatively uniform ear

projection). Moreover, the EarVision pipeline, trained on

MES projections, provides a proven framework that has

potential for a broader scope of possible applications in

maize genetics and breeding. Certain agriculturally rele-

vant aspects of maize ears, such as kernel size and row

number, could also be approximated in future versions of

the EarVision pipeline. However, incorporation of imaging

and/or modeling approaches that correct for distortion

appear important for obtaining accuracy in predictions of

kernel size. Other components, such as kernel weight, may

be more challenging to incorporate. As kernel weight is

not necessarily correlated with kernel size, this and other

related yield components may be better suited to other

phenotyping systems.

Automating the recognition and measurement of pheno-

types other than GFP expression will require adapting the

EarVision pipeline. However, no technical limitations exist

to preclude the addition of other common kernel pheno-

types to the pipeline, such as anthocyanin expression or

abnormal kernel morphology (e.g., bt1). The key compo-

nent needed to enable automated categorization of these

alternative phenotypes is an appropriately annotated set of

training images. Generating a training dataset of compara-

ble size to the one used here (150 bounding-box annotated

ear projections for a single field year) would take approxi-

mately 50 h and does not require advanced computational

expertise. Adapting the computer vision model in the Ear-

Vision framework requires a researcher with some Python

experience, but the software is designed to easily integrate

new training datasets, further increasing the potential use-

fulness of the system.

Images of ears provide a convenient, long-lasting record

of experiments, particularly if they are shared by research-

ers. For our experimental objectives, the system made it

feasible to generate a nearly twofold larger set of fluores-

cent kernel transmission data compared to our initial study

(Warman et al., 2020). Manual quantification of the original

dataset took approximately 50 h. Automated quantification

of the larger dataset using EarVision took less than 4 h

when run on multiple GPUs, representing an approxi-

mately 25-fold decrease in the time required to quantify

the images. Not only did the larger dataset confirm the

observations in that study, but it also enabled the identifi-

cation of a new male-specific gametophytic mutant, point-

ing toward a previously unknown function for a VPE. The

MES and EarVision system increases the scope of feasible

experiments addressing maize reproductive biology and

related agricultural traits by reducing a bottleneck in data

acquisition and quantification, paving the way for

high-throughput phenotyping in this area.

EXPERIMENTAL PROCEDURES

Building the maize ear scanner

The MES was built from dimensional lumber and widely available
parts. For detailed plans and three-dimensional models, see
Appendix S1a,b. The base of the scanner was built from a nominal
2 9 12 (38 9 286 mm) fir board, while the frame of the scanner
was built from nominal 2 9 2 (38 9 38 mm) cedar boards. Boards
were fastened together with screws. Strict adherence to materials
and exact dimensions of the scanner frame is not necessary, as
long as the scanner is structurally sound and large enough to
accommodate ears of varying sizes.

A standard rotisserie motor (Minostar universal grill electric
replacement rotisserie motor, 120 V, 4 W), used to rotate the
maize ear, was attached to the base of the scanner by way of a
wood enclosure. A 5/16" (8-mm) steel rod was placed in the rotis-
serie motor to provide a point to fasten the lower portion of the
ear. The top of the steel rod was ground to a flattened point with
a bench grinder to allow it to be inserted into the pith at the center
of the base of the ear.

The top of the ear was held in place with an adjustable assem-
bly constructed from a nominal 2 9 4 board (38 9 89 mm) fas-
tened to drawer slides (Liberty D80618C-ZP-W 18-inch ball bearing
drawer slides) on either side of the scanner frame (Appendix S1).
In the center of the 2 9 4 board, facing down towards the top of
the ear, is a steel pin mounted on a pillow block bearing (Letool
12 mm mounted housing self-aligning pillow flange block bear-
ing). The steel pin (12 mm) was sharpened to a point to penetrate
the top of the ear as it is lowered, temporarily holding it in place
while the ear is rotated during scanning. Because the pin can be
moved up and down on the drawer slides, a variety of ear sizes
can be accommodated in the scanner.

Ambient lighting was used for full-spectrum visible light
images. To capture GFP fluorescence, a blue light (Clare Chemical
HL34T) was used to illuminate the ear. An orange filter (Neewer
camera flash color gel kit) was placed in front of the camera lens
to partially filter out non-GFP wavelengths.

Ear scanning workflow

Preparation for the scanning process begins by trimming the top
and bottom of the ear to expose the central pith. Before scanning,
ear dimensions (length and diameter at widest point) are
recorded. Following measurement, the bottom pin is inserted into
the bottom of the ear, after which the pin with ear attached is
placed in the rotisserie motor. The top of the ear is secured by
lowering the top pin into the pith at the top of the ear.

Ear scanning is divided into two configurations. In the first
configuration (MES v1.0), a camera capable of capturing videos
(such as a cell phone or point-and-shoot digital camera, a Sony
DSCWX220 was used in our version) is mounted on a tripod
approximately 60 cm in front of the rotating ear. Videos were
captured by the camera and manually transferred to a computer
for processing and downstream analysis. In the second configu-
ration (MES v2.0), a USB camera (ELP USBFHD06H-SFV) capable
of capturing 1080p resolution video at 30 fps is directly con-
trolled by a desktop computer (Dell 3630) running the Ubuntu

© 2021 Society for Experimental Biology and John Wiley & Sons Ltd,
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Linux distribution (version 18.04.3). The camera is placed
approximately 60 cm in front of the ear for video capture.
Videos are previewed using the command line utility qv4l2
(V4L2 Test Bench, version 1.10.0) and captured using a custom
FFmpeg command (ffmpeg -t 27 -f v4l2 -framerate 30 -video_size
192091080 -i /dev/video1 /output.mov). The command captures
the number of frames required for one complete rotation of the
ear plus a small initial buffer. Videos are processed into flat
images each night by running a custom script (see following
section) with the Linux cron utility. After video processing, flat
images are uploaded to a Google cloud and local server space
using the rclone (version 1.50.2) and rsync (version 3.1.2) utili-
ties, respectively. A detailed protocol for scanning ears with the
MES using ears with GFP kernel markers and an ELP
USBFHD06H-SFV USB camera can be found in Methods S1.

Creating flat images

Videos were processed to flat images. Frames were first extracted
from videos to png formatted images using FFmpeg with default
options (ffmpeg -i ./"$file" -threads 4 ./maize_processing_folder/out-
put_%04d.png). These images were then cropped to the central
row of pixels using ImageMagick (mogrify -verbose -crop
1920x1+0+540+repage ./maize_processing_folder/*.png). The col-
lection of single pixel row images was then appended in sequential
order (convert -verbose -append+repage ./maize_processing_-
folder/*.png ./"$name.png"). Finally, the image was rotated and
cropped (mogrify -rotate "180" +repage ./"$name.png"; mogrify -
crop 1920x746+0+40+repage ./"$name.png"). We chose the conven-
tion of a horizontal flattened image with the top of the ear to the
right and the bottom of the ear to the left. Because the videos were
captured vertically, a rotation was required after appending the
individual frames. The vertical dimension of the final crop reflects
the number of frames (746) required for one full rotation of the ear.

Manually quantifying kernels using flat images

Kernels were quantified from ear projections using the Cell Coun-
ter plugin of the FIJI distribution of ImageJ (version 2.0.0) (Schin-
delin et al., 2012). Ears were assigned counter-types to correspond
to different kernel markers, after which kernels on ear images
were located and annotated manually. The Cell Counter plugin
exports results in an xml file, which contains the coordinates and
marker type of every annotated kernel. This file can be processed
to create a map of kernel locations on the ear. A detailed protocol
describing the quantification process can be found in Methods S2.

Image segmentation and labeling by watershed

transformation and k-means clustering

Two-dimensional projections of images containing GFP kernel
markers were segmented using a watershed transformation
implemented in the scikit-image Python library, version 0.16.1.
The tutorials located at https://scikit-image.org/docs/stable/auto_e
xamples/applications/plot_coins_segmentation.html and https://sc
ikit-image.org/docs/dev/auto_examples/color_exposure/plot_re
gional_maxima.html were used as starting points. Images were
first cropped by 15% along each side to remove distorted regions
along the top and bottom of the ear. Next, regional maxima were
isolated from the images using the scikit-image ‘reconstruction’
function with the original image minus a fixed h-value of 0.3 as
the seed image. The resulting h-dome regional maxima were fur-
ther processed using the Sobel operator (scikit-image ‘sobel’ func-
tion). Extreme high values of the resulting image’s histogram
were used as seeds for the scikit-image ‘watershed’ function.

Finally, connections between adjacent kernel segments were
reduced by morphological opening using the ‘binary_opening’ sci-
kit-image function.

Once segments identifying potential kernels were identified,
segments were classified into either ‘fluorescent’ or ‘non-fluores-
cent’ categories. First, segment centers were identified using the
‘center_of_mass’ function from the SciPy Multi-dimensional image
processing package (version 1.4.1). Mean intensity in red, green,
and blue channels was then calculated for each segment. Seg-
ments were divided into two clusters by channel intensity by k-
means clustering using the ‘kmeans’ function from the scikit-learn
library (version 0.22.2). Clusters were collectively identified as the
‘fluorescent’ or ‘non-fluorescent’ cluster based on their relative
mean segment intensity in the green channel. Fluorescent, non-
fluorescent, and percent fluorescent metrics were calculated using
this method for 320 images in the test dataset described in the fol-
lowing section. Adjusted R2 values were calculated using a linear
regression for each metric.

Training, validation, and test dataset generation

Training and validation datasets were generated from 300
scanned ear images from the 2018 and 2019 field seasons (150
images each season), with 70% of the images used for training
and 30% of the images used for validation. Lines contained a
selection of single mutations from the Dooner/Du collection of Ds-
GFP-tagged transposable element insertions (Li et al., 2013). Ker-
nels were manually annotated with bounding boxes and classes
(fluorescent or non-fluorescent) using LabelImg (https://github.c
om/tzutalin/labelImg). Each image took approximately 20 min to
fully annotate with bounding boxes.

A test dataset was generated using 320 scanned images of Ds-
GFP-tagged ears from the 2018 and 2019 field seasons (160
images each season). A Sony DSCWX220 camera was used to
capture images in 2018 and an ELP USBFHD06H-SFV was used to
capture images in 2019. Images used for training and validation of
the model were excluded from the test dataset. Total fluorescent
and non-fluorescent kernels were quantified using ImageJ as pre-
viously described (see section ‘Manually quantifying kernels using
flat images’).

Deep learning model selection and configuration

The deep learning pipeline used the Faster R-CNN with Inception
Resnet v2 with Atrous convolutions model, implemented in the
TensorFlow Object Detection API. A repository containing the
code used to train the model and run inference, titled EarVision, is
linked below. To preserve GPU memory, images were resized to
maximum dimensions of 600 9 1024 pixels. Training data were
split into training and validation sets with 70% of the data used
for training and 30% of the data used for validation. First-stage
RPN anchor proposals were limited to 3000, with eight aspect
ratios at each anchor point. Max total detections were set at 2000.
Data augmentations were limited to a random horizontal flip. For
the full configuration file, see the EarVision repository.

Models were created using two approaches. In the first, a single
model was trained with combined data from the 2018 and 2019
field seasons. Separate cameras were used for each season (see
description in the previous section). This model was trained for
940 epochs on an Nvidia V100 GPU, a process that took approxi-
mately 74 h. The training length was determined by optimizing
the mean average precision (mAP) at 0.5 intersection over union
(IOU). This parameter measures the average precision (true posi-
tives divided by the sum of true positives and false positives) over
a range of recall values (true positives divided by the sum of true
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positives and false negatives). This metric summarizes the
model’s performance at correctly identifying bounding boxes and
classes while minimizing false positives. At epoch 940, the mod-
el’s mAP at 0.5 IOU was 0.790, with an average recall of 0.622.

In the second approach, two models were trained indepen-
dently on 2018 and 2019 images. These models were trained for
2226 and 2468 epochs, respectively, for approximately 45 min on
an Nvidia V100 GPU. Training lengths were optimized as with the
single model described previously. The 2018 and 2019 mAPs at
0.5 IOU were approximately 0.843 and 0.867, respectively, with
average recalls of 0.601 and 0.693.

Image subdivision and bounding box confidence scores

Before training, images and annotations were divided into three
sub-images using a custom script (see below). For inference, input
images were likewise divided into three sub-images. In both
cases, images were divided along the horizontal axis (Figure 4b).
Overlapping regions of 100 pixels in width (all pixel measure-
ments based on non-scaled input images, generally 1920 9 746
pixels) were included in the left and right sub-images. Because
empty margins on the left and right of the original image gener-
ally led to the center sub-image having the largest number of ker-
nels, only the left and right sub-images included 100-pixel regions
overlapping with the center image.

Inference was first run on each sub-image individually. Next,
bounding boxes within 40 pixels of subdivision borders were
removed. This process removed partial bounding boxes of kernels
located along the dividing lines between images. Because of
image overlap, these kernels were still marked by complete
bounding boxes after partial bounding boxes were removed. After
this step, bounding boxes and annotations from the three sub-im-
ages were combined. Redundant bounding boxes in overlapping
regions were removed by non-maximum suppression using the
TensorFlow function ‘non_max_suppression’. Non-maximum sup-
pression calculates the IOU value for all bounding box pairs. For
pairs that exceed a defined IOU value, in our case 0.5, the bound-
ing box with the lowest confidence score is removed. Inference
for each input image took approximately 1 min on an Nvidia M10
GPU, with individual models performing slightly faster than the
single model.

Optimal confidence score thresholds for final bounding box out-
puts were determined empirically by maximizing the R2 value for
total fluorescent and non-fluorescent kernel counts across the test
image dataset. R2 values for confidence thresholds ranging from 0
to 1 in 0.01 increments were calculated for both fluorescent and
non-fluorescent total kernel counts by comparing model predic-
tions and manually validated data (Figure S5). A single confidence
threshold of 0.12 was chosen for the combined 2018/2019 model
to maximize the combined R2 value in both classes (Figure S5a).
Confidence thresholds of 0.08 and 0.12 were chosen for 2018 and
2019 individual models (Figure S5b,c).

Statistical methods for deep learning model application to

test datasets

Manually counted kernel totals were compared with deep learning
model predictions for the 320 test images by fitting a linear
regression using the ‘lm’ function in R. Adjusted R2 values were
calculated for fluorescent and non-fluorescent kernels, as well as
for percent fluorescent kernel transmission. Mean absolute devia-
tions were calculated for fluorescent and non-fluorescent total ker-
nel counts and percent fluorescent kernel transmission. Analysis
was carried out using both a single model trained on 2018 and
2019 images and individual models trained on each year alone.

Experimental design and statistical methods for deep

learning model application to 2018 and 2019 field trials

Inference was run on 983 scanned images from the 2018 (369
images) and 2019 (614 images) field seasons (Data S1). Scanned
ear images were the result of reciprocal outcrosses of heterozy-
gous plants carrying GFP-tagged Ds insertion alleles in a variety
of genes highly expressed across maize gametophyte develop-
ment. For a detailed experimental description, see (Warman et al.,
2020). In brief, alleles were chosen from highly expressed genes
(top 20% by fragments per kilobase of transcript per million
mapped reads [FPKM] value) in three categories: Vegetative Cell,
Sperm Cell, and Seedling as a sporophytic control. A total of 56
alleles were quantified in (Warman et al., 2020), of which 48 dis-
played fluorescent seed markers and were analyzed in this study.
Eight alleles were associated with anthocyanin seed markers and
were thus not included in this analysis. Ear images from the 2019
field season contained additional crosses from the alleles present
in the 2018 field season, plus 12 additional alleles (summarized in
Table 2), for a total of 60 alleles. All Ds-GFP stocks are available
from the Maize Genetics Cooperation Stock Center via searching
with the term ‘tdsg’ at https://maizegdb.org/data_center/stock.

After model inference, total fluorescent and non-fluorescent
seed counts were analyzed using a generalized linear model with
a logit link function for binomial counts and a quasi-binomial fam-
ily to correct for overdispersion between parent lines. Significant
differences from expected 50% inheritance were assessed with a
quasi-likelihood test with P-values corrected for multiple testing
using the Benjamini–Hochberg procedure to control the false dis-
covery rate at 0.05. Significant differences from 50% inheritance
were defined with an adjusted P-value of <0.05. Separate general-
ized linear models were carried out for each year and cross-cate-
gory (female, Seedling male, Vegetative Cell male, Sperm Cell
male). A combined generalized linear model with all 2018 manual
counts and all 2018 computer vision predictions was also created
in order to determine the significance of manual counts versus
computer vision predictions as a factor.

Software and image data availability

Ear video processing to flat images. This script processes
videos from the MES into flat ear projection images (https://
github.com/fowler-lab-osu/make_flat_images_from_videos).

Traditional computer vision methods. This repository con-
tains code used to segment kernels from images, described in the
section ‘A traditional computer vision approach for automated dis-
crimination of fluorescent and wild-type kernels’ (https://github.c
om/fowler-lab-osu/traditional_cv_kernel_counter).

EarVision. These repositories contain the EarVision computer
vision pipeline for kernel identification. Users are encouraged to
submit feature requests through the ‘Issue Tracker’ Github page
for this project (https://github.com/fowler-lab-osu/EarVision and
https://github.com/fowler-lab-osu/EarVision_TensorFlow_Object_
Detection_API).

Training and validation images. This set of images includes
those used for training and validation of the EarVision model, with
a total of 300 images and associated kernel annotations in Pascal
VOC format (https://datacommons.cyverse.org/browse/iplant/
home/shared/EarVision_maize_kernel_image_data/training_and_va
lidation_images).
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Testing images. This set of images includes those used for
testing the EarVision model, with a total of 320 images (https://da
tacommons.cyverse.org/browse/iplant/home/shared/EarVision_ma
ize_kernel_image_data/testing_images).

Example large-scale application images. This set of images
includes those used in the section ‘Application of deep learning
models to a large ear projection dataset’, with a total of 983
images (https://datacommons.cyverse.org/browse/iplant/home/sha
red/EarVision_maize_kernel_image_data/example_large_scale_a
pplication_images).

Statistical methods. This repository contains statistical meth-
ods used to analyze data and generate figure plots in R (https://
github.com/fowler-lab-osu/maize_ear_scanner_and_computer_
vision_statistics).
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Methods S2. Protocol, quantifying kernels in flat images using
ImageJ.

Appendix S1a. Maize ear scanner (MES) schematics.

Appendix S1b. Maize ear scanner (MES) model, Sketchup format
(.skp).

Data S1. Excel file, final EarVision kernel count predictions (inde-
pendent year models) from images of ears generated in two field
seasons, as shown in Figure 6.
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